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Abstract. In order to describe the anti-ferromagnetic spin ordering in AA-stacked bi-layer 

graphene, we have proposed a tight- binding model Hamiltonian consisting of nearest- 

neighbor     electron hopping of carbon atom and the interlayer electron hopping. The 

on-site Coulomb potential introduces the anti-ferromagnetic order in the system. We have 

assumed that the spin ordering of one carbon atom in a layer is opposite to that of the 

neighboring carbon atoms. We have introduced a transverse gate potential which can tune 

the anti-ferromagnetic order in the system. The Hamiltonian is solved by Zubarev’s 

Green’s function technique. Finally the temperature dependent anti-ferromagnetic gap is 

derived from the correlation functions obtained from the Green’s functions and 

consequently the results are discussed. 
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1. Introduction 

 Pristine single layer graphene has no gap in electronic spectrum near Dirac 

point [1, 2]. Bi-layer graphene consists of two hexagonal layers with new unusual 

physical properties and spectrum, which are different from the single layer 

graphene, in which AA-stacked and AB-stacked bi-layer graphene can be 

formed. Now a days mono-layer graphene and bi-layer graphene (BLG) are also 

interesting research areas to prepare graphene based materials with a tunable gap. 

More recently experimental realization of AA and AB-stacked graphene has been 

reported [3, 4]. In AA-stacked BLG, the A sub-lattice of the top layer is stacked 

directly above the same sub-lattice of the bottom layer. The energy band of AA-

stacked BLG consists of four energy bands of which two are conduction bands 
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and two are valance bands which. The bands are shifted up and down by the 

interlayer coupling γ=0.2eV. The most important character of AA-BLG is that 

the conduction and valence band coincide in the un-doped material [5]. These 

degenerate Fermi surfaces are unstable, when an arbitrary weak electron 

interaction is present and bi-layer system becomes an anti-ferromagnetic (AFM) 

insulator with a finite gap. This electronic instability is the strongest, when the 

bands cross at the Fermi level. The on-site Coulomb repulsion is the strongest 

interaction in AA-stacked BLG system and this interaction is sufficient for 

stability or meta-stability of the AFM order. Here we investigate the evolution of 

the anti-ferromagnetic order in AA-stacked BLG by using tight binding 

Hamiltonian model with interlayer and interlayer electron hoppings, transverse 

electric field and Coulomb interaction. 

2. Model Hamiltonian  

The monolayer graphene has honey-comb lattice with A and B sub-lattices. 

The bi-layer graphene (BLG) consists of two monolayers with AA-stacked AB-

stacked BLG systems. Here    and    are the two sub-lattice atoms in first layer, 

while    and    are in second layer. Two similar sub-lattice atoms lie one above 

the other in AA-stacked BLG. The unit cell of AA-stacked BLG contains four 

atoms like   ,   ,    and   . Anti-ferromagnetism develops in AA-stacked 

BLG, where the spin of a particular atom is opposite in direction to the 

surrounding atoms. Hence the single particle Hamiltonian for AA-stacked bi-

layer graphene is given by  
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The Hamiltonian    represents on-site electron hopping and here 

      
  (      )and       

  (      )are the creation (annihilation) operators of 

electrons with spin   in the layers        on the sub-lattices    and B.  ,  and 

   represent respectively the chemical potential, doping concentration and 

impurity potential at A-sites of both the layers. A transverse gate potential ( ) is 

applied between two layers with      [6, 7]. The anti-ferromagnetic gap    

develops in AA-stacked BLG. 
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The Hamiltonian    in equation (2) represents the hopping of electrons to 

nearest-neighbor lattice points having hopping energy        ( ) with 

           with nearest-neighbor in-plane hopping integral and   ( ) is the 

nearest-neighbor electron dispersion. 

    ∑  

       

          
            

       
                  

                                                 ( ) 

The Hamiltonian      represents the hopping of electrons from first layer to 

second layer for vice-versa with inter plane hopping energy        |  ( )|. 

Here        and |  ( )| are the perpendicular hopping integral and interlayer 

dispersion. The total Hamiltonian is given by             

3. Calculation of Green’s functions and AFM gap equation for AA-BLG 

 We calculate the four coupled electron Green’s functions involving electrons 

of A   site as well as B site carbon atoms and they are written as   

    (   )                  
            (   )                  

     ( ) 

where       for two layers and        for four Green's functions. The 

coupled Green’s functions  are calculated by Zubarev’s techniques [8] and for 

first layer at A site and B sites these are written 

as     (   )  
   

  | ( )|
          (   )  
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   where     and     are  not  

give explicitly. The denominator terms | ( )|in the above expression can be 

written as| ( )|  |  ( )||  ( )|  *( ̅     
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   . Equating the | ( )| to 

zero i.e.  | ( )|   , we get the quasi-particle dispersion energies     ( ) which 

are given below  

 

    ( )    (  ) √    (  )                                               ( ) 

 

where     
  

 
   

  |  |  |   |          √
  

 
  

  |  |
  (  |   |   

  

 
 ) 



R Swain et al.
 

 

Orissa Journal of Physics, Vol. 25,  No.1, February 2018 66 

 The AFM gap equation is written as  

   
 

(  ) 
∬      [(     

        
  )  (     

        
  )]        ( ) 

Where      
 

  represents the electron densities at different sites       , both 

layers (     ) for both spin  (     ).  All the parameters appearing in the 

calculation are scaled by nearest-neighbor hopping integral   . The dimensionless 

quantities are written as: The site energy at A site ea = 
  

  
 , site energy at B site eb 

= 
  

  
 , gate potential v = 

 

  
,  nearest- neighbor  hopping integral  ̃    , AFM 

gap    
  

  
 and Coulomb energy   

 

  
. 

4. Results and Discussion 

 The anti-ferromagnetic(AFM) gap equation given in equation (6) is solved 

self- consistentily for different values of transverse gate potentials,         

      as shown in figure 1. For a given gate potential        , the AFM gap 

starts from the value     at temperature       , then increases to attain a 

flat maximum at temperature      , then decreases at higher temperatures upto 

Neel temperature,        . Thus the AMF gap exhibits mean field behavior at 

its second part. However the AFM gap exhibits a large supression at low 

temperature showing re-entrant behavior. When higher transverse gate potentials 

are applied, the AFM gap is enhanced throughout the temperature range 

associated with the enhancement of the Neel temperature . In addition the re-

entrant behavor in anti-ferromagnetic order at low temperatures vanishes as 

shown by the existance of a finite anti-ferromagnetic order. 

 The figure 2  shows the interplay of Coulomb potential ( ) and 

transverse gate potential ( ) on the AFM gap for different values of different gate 

potentials,              . For a given lower gate potential,         

the anti-ferromagnetic order is absent for the Coulomb potential        . The 

AFM gap gradually increases with increase of Coulomb potential to achive its 

maximum value,          corresponding to the Coulomb potential   

   (                         ). The AFM gap shows a small 

sharp drop at      , then remains constant for      , indicating that the 

magnitude of the AFM order remains constant. It is to mention here that for a 

given Coulomb potential, the AFM gap is enhanced with increase of the 

transverse gate potential. Simultaneously the position of the AFM gap maximum 

shifts to lower Coulomb potential with increase of the gate potential and shifts to 



The Interplay of the Coulomb potential and transverse …. 

Orissa Journal of Physics,  Vol. 25,  No.1,  February 2018 67 

higher Coulomb potential with decrease of gate potential. It is mention worthy 

that the gate potential decrease the minimum Coulomb potential with a very 

small amount. Thus the Coulomb potential and gate potential display an 

interesting interplay in the anti-ferromagnetic order in AA-stacked bi-layer 

graphene(BLG). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Plot of AFM gap (z) vs. Coulomb potential (u) for different gate potential v = 0.035 

− 0.044 at a fixed temperature t = 0.01 and interlayer hopping energy          

 Figure 1. Plot of AFM gap (z) vs. temperature (t) for different Gate potentials  

 v = 0.035 − 0.044 at fixed Coulomb energy u = 0.855 and interlayer hopping energy 
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 The figure 3 shows the effect of Coulomb potential on AFM gap as a 

function of gate potential. For a given lower Coulomb potential        , the 

anti-ferromagnetic order is completely absent for the gate potential   

     (                                ). The AFM gap 

starts from zero  at         for        , then increases with increase of 

gate potential to attain its peak value,          for gate potential          

(                       ) and then reduces sharply for higher 

values of gate potentials. This indicates that A-site magnetization is greater for 

the gate potential lying in the range              and the B-site 

magnetization gradually becomes higher compared to A-site magnetization for 

the gate potential         . At a given finite gate potential, the AFM gap is 

enhanced with increase of the Coulomb potential. It is to mention here that, with 

increase of Coulomb potential, a lower magnitude of gate potential can induce 

anti-ferromagnetic order in the AA-stacked BLG. With increse of the Coulomb 

potential from         to         the minimum gate potential to induce 

anti-ferromagnetic order in AA-stacked BLG reduces from         to 

        . This study again clearly exhibits the interesting interplay between 

Coulomb potential and transverse gate potential in inducing the AFM order in the 

system. 

 

Figure 3.  Plot of AFM gap (z) vs. Gate potential (v) for different Coulomb potential u = 

0.840 − 0.890 at a fixed temperature t = 0.01 and interlayer hopping energy          
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5. Conclusions 

 We have proposed a tight-binding model study for the temperature 

dependent anti-ferromagnetic magnetization in AA-stacked BLG by introducing 

on-site repulsive Coulomb potential and transverse gate potential. All the 

calculations are carried out by Zubarev’s Green’s function technique. This work 

presents an interesting interplay of Coulomb potential and gate potential for the 

on-set of anti-ferromagnetic order in AA-stacked BLG. 
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